Interpretable Emotion Recognition Using EEG Signals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emotion recognition method using entropy analysis of EEG signals

This paper proposes an emotion recognition system using EEG signals, therefore a new approach to emotion state analysis by approximate (ApEn) and wavelet entropy (WE) is described. We have used EEG signals recorded during emotion in five channels (FP1, FP2, T3, T4 and Pz), under pictures induction environment (calmneutral and negative excited) for participants. After a brief introduction to the...

متن کامل

Evaluating Classifiers for Emotion Recognition Using EEG

There are several ways of recording psychophysiology data from humans, for example Galvanic Skin Response (GSR), Electromyography (EMG), Electrocardiogram (ECG) and Electroencephalography (EEG). In this paper we focus on emotion detection using EEG. Various machine learning techniques can be used on the recorded EEG data to classify emotional states. K-Nearest Neighbor (KNN), Bayesian Network (...

متن کامل

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

Emotion Pattern Recognition Using Physiological Signals

In this paper, we first regard emotion recognition as a pattern recognition problem, a novel feature selection method was presented to recognize human emotional state from four physiological signals. Electrocardiogram (ECG), electromyogram (EMG), skin conductance (SC) and respiration (RSP). The raw training data was collected from four sensors, ECG, EMG, SC, RSP, when a single subject intention...

متن کامل

Speaker dependent emotion recognition using speech signals

This paper examines three algorithms to recognize speaker’s emotion using the speech signals. Target emotions are happiness, sadness, anger, fear, boredom and neutral state. MLB(Maximum-Likelihood Bayes), NN(Nearest Neighbor) and HMM(Hidden Markov Model) algorithms are used as the pattern matching techniques. In all cases, pitch and energy are used as the features. The feature vectors for MLB a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2928691